Blue Laser Diodes
نویسندگان
چکیده
منابع مشابه
Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering
To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...
متن کاملHigh-Power Pure Blue InGaN Laser Diodes
We fabricated high-power pure blue laser diodes (LDs) by using GaN-based material for full-color laser display. The operating output power, voltage and wall-plug efficiency of the LDs at forward current of 1.0 A were 1.17 W, 4.81 V and 24.3%, respectively. The estimated lifetime of the LDs was over 30,000 hours under continuous-wave operation. key words: InGaN, GaN, high-power laser, blue LD
متن کاملHigh speed visible light communication using blue GaN laser diodes
GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmis...
متن کاملInGaN-BASED LASER DIODES
UV InGaN and GaN single-quantum well structure light-emitting diodes (LEDs) were grown on epitaxially laterally overgrown GaN (ELOG) and sapphire substrates. When the emission wavelength of UV InGaN LEDs was shorter than 380 nm, the external quantum efficiency (EQE) of the LED on ELOG was much higher than that on sapphire, but only for highcurrent operation. At low-current operation, both LEDs ...
متن کاملAntireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy.
Commercially available GaN-based laser diodes were antireflection coated in our laboratory and operated in an external cavity in a Littrow configuration. A total tuning range of typically 4 nm and an optical output power of up to 30 mW were observed after optimization of the external cavity. The linewidth was measured with a beterodyne technique, and 0.8 MHz at a sweep time of 50 ms was obtaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optik & Photonik
سال: 2007
ISSN: 1863-1460
DOI: 10.1002/opph.201190253